Challenges in Cancer Pathology

Martin Johansson, Professor, Clinical Pathology, Lund University and University of Gothenburg Clinical pathology forms the basis for diagnosis of all diseases where a disruption of tissue architecture is seen.

The bulk of current diagnostics is performed using traditional formalin fixation followed by paraffin embedding and microscopic analysis.

Molecular pathology is on the rise however. Today tissue is analyzed with gene panels where sets of genes are sequenced or analyzed with PCR/sequencing. In the future whole genome sequencing will be performed with an added step of in silico analysis of genes of importance for disease management.

This of great importance for genetic disease or in treatment decisions where the results are clear cut and dicotomous, present/not present.

Tumour type	Genes	Abnormality	Drugs/indication
Non-small cell lung cancer	EGFR	Activating mutation	Response to EGFR TKI* treatment
	ALK	Translocations	Response to crizotinib treatment
Melanoma	BRAF	Activating mutation	Response to vemurafenib treatment
	KIT	Activating mutation	Response to imatinib treatment
GIST	KIT	Activating mutation	Response to imatinib treatment
Colorectal cancer	KRAS	Activating mutation	Resistance to anti-EGFR treatment
	NRAS	Activating mutation	Resistance to anti-EGFR treatment
	BRAF	Activating mutation	Poor prognosis and possible resistance to anti-EGFR treatment
Breast cancer	ERBB2 (HER2)	Amplification	Response to trastuzumab or lapatinib treatment
	BRCA1/2	Mutation	Response to PARP inhibitors
Ovarian cancer	BRCA1/2	Mutation	Response to PARP inhibitors

*EGFR TKI-tyrosine kinase inhibitors active against EGFR, such as gefitinib and erlotinib.

The current surge of targeted therapies increase the demand for the development of predictive markers in order to determine who might benefit from a particular form of treatment. Examples are: check-point inhibitors, anti-angiogenesis regimens and RTK inhibition.

This is part of the buzzwords: personalized medicine.

Novel targeted treatments are expensive and potentially harmful for the patient.

Many current studies depend on interpretation of RNA levels based on RNA sequencing histological material from patients included in the study. RNA levels do not always correspond to actual changes In protein expression.

Proteins are the units of biological function, RNA is a unit of potential function.

A major challenge is to integrate the findings of predictive relevance derived from sequencing into a histological context. Here pathology must serve an active function.

An example from ESMO 2020:

7000 - Kidney ccRCC Immune Classification (KIC) enhances the predictive value of T effector and angiogenesis signatures in response to Nivolumab

<u>Maxime Mevian¹²</u>, Benoit Beuselinck, Cecile Dalban, Yann-Alexandre Vano, Nathalie Rioux-Leclercq, Catherine Sautes-Fridman, Eduard Roussel, Annelies Verbiest, Nathalie Chaput, Stephane Terry, Christine Chevreau, Marine Gross-Goupil, Aude Flechon, Brigitte Laguerre, Sylvie Chabaud, Florence Tantot, Diether Lambrechts, Bernard Escudier, Wolf-Hervé Fridman, Laurence Albiges

1. Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France.

unicancer

2. Programme Cartes d'Identité des Turneurs, Ligue Nationale contre le Cancer, F-75013, Paris, France.

Material and Methods

Nivoren Translational Program

⁴ McDermott, D.F., Huseni, M.A., Atkins, M.B. et al. Nat Med (2018).

medicine

Corrected: Publisher Correction

Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma

David F. McDermott^{1*}, Mahrukh A. Huseni², Michael B. Atkins³, Robert J. Motzer⁴, Brian I. Rini⁵, Bernard Escudier⁶, Lawrence Fong⁷, Richard W. Joseph⁸, Sumanta K. Pal⁹, James A. Reeves¹⁰, Mario Sznol¹¹, John Hainsworth¹², W. Kimryn Rathmell¹³, Walter M. Stadler¹⁴, Thomas Hutson¹⁵, Martin E. Gore¹⁶, Alain Ravaud¹⁷, Sergio Bracarda¹⁸, Cristina Suárez¹⁹, Riccardo Danielli²⁰, Viktor Gruenwald²¹, Toni K. Choueiri²², Dorothee Nickles², Suchit Jhunjhunwala², Elisabeth Piault-Louis², Alpa Thobhani²³, Jiaheng Qiu², Daniel S. Chen², Priti S. Hegde², Christina Schiff², Gregg D. Fine² and Thomas Powles²⁴

Atezo + bev Atezo Sunitinib

Becht et al. Genome Biology (2016) 17:218 DOI 10.1186/s13059-016-1070-5

Genome Biology

METHOD

Open Access

Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression

Etienne Becht^{1,2,3,4}, Nicolas A. Giraldo^{1,2,3}, Laetitia Lacroix^{1,2,3}, Bénédicte Buttard^{1,2,3}, Nabila Elarouci⁴, Florent Petitprez^{1,2,3,4}, Janick Selves^{5,6}, Pierre Laurent-Puig⁷, Catherine Sautès-Fridman^{1,2,3}, Wolf H. Fridman^{1,2,3} and Aurélien de Reyniès^{4*}

blood mononuclear cell. **b** Quartiles of MCP-counter scores on positive and control samples in the discovery and validation microenvironment series. Gray indicates missing values. **c** Representative transcriptomic markers and their corresponding expression patterns in the MCP discovery series

Angiogenesis and T effector signatures* associated with Nivolumab outcome in Discovery cohort (n=79)

Angio low Teff high associated with good outcomes (ORR + PFS)

KIC* C & E displayed similar Immune-high, Stromal-low phenotype

Only partial overlap is observed between KIC* Immune-high, Stromal-low and Angio-low, Teff-high tumors

- 31% overlap between KIC Immune-high, Stromal-low and Angio-low, Teff-high
- Angio-low, Teff-high and KIC KIC Immune-high, Stromal-low mostly identify different tumors

CD31, marker for vasculature (angio)

Summing up:

Pathology is still golden standard for diagnosis and grading of malignancies.

Molecular pathology offers important services in diagnosis of mutations in genes of therapeutic importance.

Much of the research into treatment prediction addresses mRNA levels in tumour tissue and here histopathological correlation is an important challenge.

The histological site for actual *protein expression* in tumour tissue is probably of highest importance for interpretation and of high impact for prediction.